
Software Design Document, CMS

Software Design Document,

Implementation and Testing

Complaint Management System (CMS)

Prepared for: Public Works Department,
Dhaka, Bangladesh.

By: Nextech Limited, Dhaka, Bangladesh.

Software Design Document, CMS

TABLE OF
CONTENTS

1. Introduction .. 1

2. Design considerations ... 2

3. Architecture .. 3

4. Data design ..12

5. Component design ..23

6. Software Interface design ..30

7. Class Diagram ..97

8. Implement and Testing ...99

1

1. Introduction
The project is to create a unified Complaint Management System for all the departments of
the Public Works Department. The system should be able to allocate Complaint
Management to the authenticated users, keep track of changes, and be accessed only by the
authorized personnel.
This design document presents the designs used or intended to be used in implementing the
project. The designs described, follow the requirements specified in the Software
Requirements Specifications document prepared for the project.

1.1. Purpose
The purpose of this document is to present a detailed description of the designs of the
Complaint Management System, created for the Public Works Department. Firstly, this
document is intended for the programming group in Team 1, to use the designs as
guidelines to implement the project. Equally, this document is also for the team’s Leader,
Mr.Mizanul Hoque Howlader, as it fulfils one of the requirements of the project. Lastly, this
document could be used for designers who try to upgrade or modify the present design of
the Complaint Management System.

1.2. Scope
This document gives a detailed description of the software architecture of the Complaint
Management system. It specifies the structure and design of some of the modules discussed
in the SRS. It also displays some of the use cases that had transformed into sequential and
activity diagrams. The class diagrams show how the programming team would implement
the specific module.

2

1.3. Overview
This document is written according to the standards for Software Design Documentation
explained in “IEEE Recommended Practice for Software Design Documentation”.
Sections 3 – 5 contain discussions of the designs for the project with diagrams, section 6
shows samples of UI from the system, and section 7 contains the class diagrams. The
appendices contain the setup and configuration needed for the CMS, a list of functions that
are implemented in this version, and that are to be implemented in future version, and a
list of tools and environment used in the entire project, along with the time contribution of
team members. The appendices also include the test report and test cases.

2. Design considerations

2.1. Assumptions
The user of the Complaint Management system is aware of basic operations of a computer
and web pages. The user also understands the standard terms used for operation.

2.2. Constraints
The system is built accessible only through public works department’s website. The system
is implemented using PHP (Laravel) and MySQL technologies.

2.3. System environment
The web based unified Complaint Management system is designed to work on all operating
systems. The system is accessible through any laptop and desktop, that is connected to the
server. It is accessible at all times.

2.4. Design methodology
The system is designed with flexibility for further development and/or modification. The
system is divided into manageable processes that are grouped to sub-modules and modules
that are built with abstraction.

3. Architecture

3.1. System design
The block diagram below shows the principal parts of the system and their interactions.

3

Figure 1. Block diagram for CMS

CMS Database

4

The development of the proposed model is not only depending on how the system works. It
also depends on the working flow process that being identified and need to be implemented
and followed. The proposed complaint handling model is a method, platform or web-
application to ensure that the complaint process is addressed and handled properly. The
proposed Work Flow Process is shown in figure.

Start

|Allotee Data

From PWD?From Allotee
registry?

Allotee with
flat No/mobile

Get PIN no with
SMS

Get ID

Create Complaint

Classify
Complaint

Search for SDEEND

SDE found? Assign to Dept

Follow up Staff available? Check Staff DBComplaint Solved?

Hold on
Complaint

Solved Complaint
Close Complaint

N

Y

N

Y

N

Y

Y

N

YY

N

Match Y

Proposed Working Flow Process

5

Figure shows the main processes in the working flow process of the proposed model. First, verifying the

Allottee validity, then creating the Allottee complaint followed by a detailed processes to manage each

complaint according it’s classification priority and searching in the knowledgebase for related reference or

similar case in order to find a quick handling procedure for finding a solution with the contribution of the

responsible staff who will be dedicated to identify the rules on how to solve and get appropriate solution. In

this paper the Nextech Ltd. tries to develop a model in terms of electronic complaints, which can support

complaining from poor service quality and delivery. The advantage behind this model is the simple method for

handling the Allottee’s complaints about what dissatisfies them.

3.2 System Design

This model was designed to remove the main complaint handling department. In consequence, it made a small

complaint handling section in each department. These small complaint handling sections provide complaint

services for irritated Allottee’s. Due to each organization has its own complaint handling procedure therefore

each complaint section provides specific complaints handling method according to its department. [5]

The Nextech Ltd. disagrees with the previous model concerning the idea of removing the centralization of

handling the complaints as this is against the idea behind e-CRM which is the coordination and common view

of all the processes related to customer and proposed the below architecture for e- Complaint System based on

SOA. The Nextech Ltd. enhanced the previous model by redesigning and centralizing the Complaint

Management System, as shown in figure 4.

The proposed model is divided into 3-tiers that consist of the following:

 Database - tier

It contains data about system users and their profiles, Allottee s information, available resources, and social

association profiles.

 Business – tier

It consists of the core of the system. i.e. complaint handling and feedback components.

 Presentation - tier

It consists of web-based user interface.

Fig.4. Proposed Model for e-complaint handling system using SOA

The proposed system could be generally applicable for any web-based e-complaining system.

3.3 Implementation Design
After explaining the working flow process and the proposed model, the next step is the implementation of the

6

system as follows:

3.3.1 Use Case Diagram
3.3.1.1 ROLES

 Admin- Create system users and manage their privileges,

 Allottee - Make Complaints against the provided services,

 Agent- Record the Complaint in the web-based then assigns follow up to available staff,

 Staff- Manage the Complaints causes and actions in the system then provide solutions,

 Civil registry- Has all Allottee s Name, Mobile, Flat... etc,

 PWD- Has Allottee s details that deserve services,

 Staff Data- Has all staff details who works on PWD and could be assigned to deal with Complaints.

3.3.1.2 Scenario Overview

An Allottee encounters a problem with the PWD; he enters the web and fills his new complaint in the

complaint form, or he contacts the agent and explains his problem. Then the agent records the problem; opens

the complaint system and creates the new complaint entry, also updates the complaints and enters information

on each failure associated with the complaint. In a subsequent process the staff of the service department

handles the complaints and delegates each complaint to the responsible one. Each department deal with the

assigned complaints according to the management rules then analyzes actions and causes to get results. After

that, propose a satisfying solution for the Allottee ’s problem. If this solution is satisfactory for the Allottee

then the statement of the complaint is closed. If not, the responsible department edits the original complaint

and the process starts again. The new Complaint Management System is needed to improve these workflows

and enable each department to contribute to the process of solving the Allottee complaints.

7

CMS System

Create System
Users

Manage
Privileges

Create
Complaint

Add new
Complaint Verify Allotee

Manage
Complaint

Update
Complaint

Generate
Causes/Actions/

Results

Analyze
Complaint

Assign Follow
up

Admin

Allottee
(Complainant)

Agent

Staff
(Dept/Unit)

Allotee registry
Service

PWD Service

Staff Data Service

<<includes>>

<<includes>> <<uses>>

<<includes>>

<<includes>>

<<uses>>

<<uses>>

<<extends>>

<<
ex

te
nd

s>
>

Proposed Use case Diagram

3.3.2 Sequence Diagram

For more understanding, the Nextech Ltd. summarizes the flow of the major functions of the system using the

sequence diagram to show how processes operate one with another and in which order. The major functions of

this system need to answer the following questions as: Which type of users deal with it? Who manage the

system users and assign roles? Who make the complaint? Who deal with each complaint and according to

which criteria? Who solve the complaint? Who follows up each complaint? Fig. shows the flow for the four

main system users dealing with the system.

 First user: the administrator who adds new users or manages system privilege for whom exist on the

system by assigning their roles.

 Second user: the Allottee (complainant) who makes complaint and check for existing complaint status.

 Third user: the agent who registers or manages Allottee Complaint each according to its classification and

follows up through knowledge base in case of solution not found then forward the complaint case to the

8

responsible staff of the service department to handle it.

 Fourth user: the responsible staff of the service department who deals with the waiting complaints by

identifying and analyzing the causes and actions for each complaint then resolving it according to the

management rules and propose a preventive action in order to ensure that this complaint will not be raised

again. Then finally, back the complaint case to the agent in order to follow it up. After that, the agent updates

the complaint status or closes the complaint case if it resolved.

Also there are two main services that integrate with the proposed system, as showed in fig.

 First service: the PWD service which contains the entire Allottee s’ information that deserves the services

each according to his region and Governorate, also it contains the entire staffs’ information, each according to

his department and role to deal with cases on the system.

 Second service: the Allottee db service which contains the entire Allottee’s identity information, if they

deserve services or not, also to validate the identity of the Allottee who make complaint in order to improve

the provided service as general.

Admin PWD Service

:Application
<<UI>> :User

Request Add User

Fill Search Form

Display Search Form

Assign Role & Save

Request Manage User

Fill Search Form

Assign Role & Save

Display Search Form

Display Message Saved

Display Message Saved

Search for User in PWD CMS DB

Get Users

Save

Successfully Saved

Search for User

Get Users

Save

Successfully Saved

9

allottee PWD
Service

:Application
<<UI>> :Complaint

Request Add Complaint

Fill Complaint Form

Display Complaints Form

Display Message Saved,
Complaint Number

:Managing :Following Up

Allottee
db

Service

Agent

Save Complaint

Complaint Saved,
Return Complaint Number

Request Check
Complaint Status

Fill Searchi Form

Display Login Form
{enter ID, Name, Complaint Number}

Display Complain Status

Search for Valid Complaint

Return Complaint Status

Display Error Message

Invalid Complaint

[Valid Complaint]Cond.

Request Add Complaint

Fill Complaint Form

Display Complaints Form

Display Complains

Get List of Complaints

[Check Allotee]
Cond.

Check in CMS DB

Allotee Valid

Check in CMS DB

CMS Valid

Error Message Invalid
Allottee

Save Complaint with Weitght Search for SDE

Cond.

Get ProperSDE

Staff Found

Follow Up to Staff

Add Solution

Display Solution

Staff

Get Waiting Complaint Search for Waiting Complaint

Select High Priority
Alt.

Display Message Saved

Solution Saved

Add Solution

Alt.

Display Notice send

Notice send

Notice for waiting
Complaint

10

Sequence Diagram for the proposed CMS

3.3.3 Activity Diagrams
Activity diagram is another important diagram in UML used to describe dynamic aspects of the system.

An activity diagram visually presents a series of actions or flow of control in a system similar to a

flowchart or a data flow diagram.

Browse

Click submit complaint

Fill and Submit

Display home Page

Display complaint form

[Start]

[End]

USER (Allottee)
SYSTEM

Check Information
Validity

[Invalid]

[Valid]

11

login

Click assign resolvers

Select Complaint

Display Administration Page

Display complaint list

Display resolution officer
list

[Start]

Update complaint
information

Select resolver

[End]

ADMINISTRATOR
SYSTEM

12

4. Data design

4.1. Data description
MySQL database and PHP (Laravel) to communicate with the database that is installed
locally on the server.

4.2. Data dictionary

Data Dictionary
tbl_allottee

Name Type Collation Attribut

es
Nu
ll

Defau
lt

Commen
ts Extra

1 allottee_id int(11)

No None

AUTO_INCREM
ENT

2 allottee_name varchar(2
55)

latin1_swedis
h_ci

No None

3 allottee_email varchar(1
00)

latin1_swedis
h_ci

No None

4 allottee_mobile varchar(1
5)

latin1_swedis
h_ci

No None

5 nid varchar(3
0)

latin1_swedis
h_ci

No None

6 govt_departme
nt_id int(11)

No None

7 designation varchar(3
0)

latin1_swedis
h_ci

No None

8 permanent_ad
dress text latin1_swedis

h_ci
No None

9 division_id int(11)

No None

10 district_id int(11)

No None

11 thana_id int(11)

No None

12 picture varchar(5

0)
latin1_swedis
h_ci

No None

13 entry_by int(11)

Ye
s

NUL
L

14 entry_date date

Ye
s

NUL
L

15 update_by int(11)

Ye
s

NUL
L

16 update_date date

Ye
s

NUL
L

tbl_apartment

http://localhost/phpmyadmin/sql.php?db=pwdgov_cms&table=tbl_allottee

13

Name Type Collation

Att
rib
ute
s

Null Defau
lt Comments Extra

1 apartment_id int(11)

No None

AUTO_INCRE
MENT

2 apartment_no varchar(200) latin1_sw
edish_ci

No None

3 apartment_description text latin1_sw
edish_ci

No None

4 apartment_building_id int(11)

No None

5 apartment_quarter_id int(11)

No None

6 allottee_name varchar(200) latin1_sw
edish_ci

No None

7 allottee_designation varchar(100) latin1_sw
edish_ci

No None

8 allottee_office_loc varchar(200) latin1_sw
edish_ci

No None

9 allottee_mobile varchar(100) latin1_sw
edish_ci

No None

10 email varchar(100) latin1_sw
edish_ci

No None

11 entry_by int(11)

No None

12 entry_date datetime

No None

13 update_by int(11)

No None

14 update_date datetime

No None
 tbl_building

Name Type Collation Attribut

es
Nul
l

Defau
lt

Commen
ts Extra

1 building_id int(11)

No None

AUTO_INCREME
NT

2 building_no varchar(20
0)

latin1_swedish
_ci

No None

3 building_name varchar(10
0)

latin1_swedish
_ci

No None

4 building_descripti
on text latin1_swedish

_ci
No None

5 building_quarters
_id int(11)

No None

6 building_type int(11)

No None

7 entry_by int(11)

Yes NULL

8 entry_date datetime

Yes NULL

9 update_by int(11)

Yes NULL

1
0 update_date datetime

Yes NULL

http://localhost/phpmyadmin/sql.php?db=pwdgov_cms&table=tbl_building

14

tbl_buildingtype

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 buildingtype_id int(11)

No None

AUTO_INCREME
NT

2 rank_id int(11)

Yes NULL

3 buildingtype_na
me

varchar(5
0)

latin1_swedish_
ci

No None

4 entry_by int(11)

Yes NULL

5 entry_date date

Yes NULL

6 update_by int(11)

Yes NULL

7 update_date date

Yes NULL

tbl_circle

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 circle_id int(11)

No None

AUTO_INCREMEN
T

2 circle_name varchar(100
)

latin1_swedish_c
i

No None

3 entry_by int(11)

Yes NULL

4 entry_date date

Yes NULL

5 update_by int(11)

Yes NULL

6 update_dat
e date

Yes NULL

tbl_department

Name Type Collation Attributes Nul

l
Defaul
t

Commen
ts Extra

1 department_id int(10)

UNSIGNE
D No None

AUTO_INCREME
NT

2 department_na
me

varchar(5
0)

utf8mb4_unicode
_ci

No None

3 entry_by int(10)

UNSIGNE
D Yes NULL

4 entry_date datetime

No None

5 update_by int(10)

UNSIGNE
D Yes NULL

6 update_date datetime

No None

7 created_at timestam

p
Yes NULL

8 updated_at timestam
p

Yes NULL

15

tbl_designation

Name Type Collation Attribute

s Null Defa
ult

Commen
ts Extra

1 designation_id int(10)

UNSIGN
ED No Non

e
AUTO_INCREMENT

2 designation_na
me

varchar(
50)

utf8mb4_unicod
e_ci

No Non
e

3 entry_by int(10)

UNSIGN
ED Yes NUL

L

4 entry_date datetime

Yes NUL
L

5 update_by int(10)

UNSIGN
ED Yes NUL

L

6 update_date datetime

Yes NUL
L

7 created_at timesta
mp

Yes NUL
L

8 updated_at timesta
mp

Yes NUL
L

tbl_district

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 district_id int(11)

No None

AUTO_INCREME
NT

2 district_name varchar(15
0)

latin1_swedish_
ci

No None

3 district_geo varchar(11) latin1_swedish_
ci

No None

4 division_geo_co
de int(11)

No None

5 entry_by varchar(15
0)

latin1_swedish_
ci

Yes NULL

6 entry_date date

Yes NULL

7 update_by varchar(15
0)

latin1_swedish_
ci

Yes NULL

8 update_date date

Yes NULL

16

tbl_division

Name Type Collation Attributes Null Default Comments Extra
1 division_id int(11)

No None

2 division_name varchar(150) latin1_swedish_ci

No None

3 division_circle_id int(11)

No None

4 entry_by int(11)

Yes NULL

5 entry_date date

Yes NULL

6 update_by int(11)

Yes NULL

7 update_date date

Yes NULL

tbl_division_geo

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 division_id int(11)

No None

AUTO_INCREME
NT

2 division_name varchar(15
0)

latin1_swedish_
ci

No None

3 division_geo_co
de

 varchar(5) latin1_swedish_
ci

No None

4 entry_by int(11)

Yes NULL

5 entry_date date

Yes NULL

6 update_by int(11)

Yes NULL

7 update_date date

Yes NULL

tbl_govt_department

Name Type Collation Attribut

es
Nul
l

Defau
lt

Commen
ts Extra

1 govt_department_id int(11)

No None

AUTO_INCREME
NT

2 govt_department_na
me

varchar(15
0)

latin1_swedish
_ci

No None

3 entry_by int(11)

Yes NULL

4 entry_date date

Yes NULL

5 update_by int(11)

Yes NULL

6 update_date date

Yes NULL

tbl_problemtype
Name Type Collation Attributes Nu

ll
Defau
lt

Commen
ts Extra

1 prob_type_id int(10)

UNSIGN
ED No None

AUTO_INCREME
NT

17

Name Type Collation Attributes Nu
ll

Defau
lt

Commen
ts Extra

2 prob_type_desc varchar(5
0)

utf8mb4_unicod
e_ci

No None

3 pro_type_maxday int(10)

UNSIGN
ED Yes NUL

L

4 prob_type_depart
ment int(10)

UNSIGN
ED Yes NUL

L

5 entry_by int(10)

UNSIGN
ED Yes NUL

L

6 entry_date datetime

Yes NUL
L

7 update_by int(10)

UNSIGN
ED Yes NUL

L

8 update_date datetime

Yes NUL
L

9 created_at timestam
p

Yes NUL
L

1
0 updated_at timestam

p
Yes NUL

L

tbl_quarters

Name Type Collation Attributes
N
ul
l

Defa
ult Comments Extra

1 quarters_id int(11)

N
o None

AUTO_INCRE
MENT

2 quarters_name varchar(2
50)

latin1_swedis
h_ci

N
o None

3 quarters_sup_cv int(11)

N
o None

4 quarters_sup_cv_
mo

varchar(5
0)

latin1_swedis
h_ci

N
o None

5 quarters_sup_em int(11)

N
o None

6 quarters_sup_em
_mo

varchar(5
0)

latin1_swedis
h_ci

N
o None

7 quarters_ee int(11)

N
o None

8 quarters_ee_mob varchar(5
0)

latin1_swedis
h_ci

N
o None

9 quarters_ee_em int(11)

N
o None

10 quarters_ee_em_
mob

varchar(5
0)

latin1_swedis
h_ci

N
o None

11 quarters_se int(11)

N
o None

12 quarters_se_mob varchar(5 latin1_swedis N None

18

Name Type Collation Attributes
N
ul
l

Defa
ult Comments Extra

0) h_ci o

13 quarters_se_em int(11)

N
o None

14 quarters_se_em_
mob

varchar(5
0)

latin1_swedis
h_ci

N
o None

15 circle_id int(11)

N
o None

16 division_id int(11)

N
o None

17 subdiv_id int(11)

N
o None

18 quarters_district
_id int(11)

N
o None

19 entry_by int(11)

Y
e
s

NUL
L

20 entry_date date

Y
e
s

NUL
L

21 update_by int(11)

Y
e
s

NUL
L

22 update_date date

Y
e
s

NUL
L

tbl_quarter_supervisor

Name Type Collation Attributes Null Default Comments Extra
1 supervisor_id int(11)

No None

AUTO_INCREMENT

2 quarter_id int(11)

No None

3 department_id int(11)

No None

4 designation_id int(11)

No None

5 user_id int(11)

No None

6 entry_by int(11)

Yes NULL

7 entry_date date

Yes NULL

8 update_by int(11)

Yes NULL

9 update_date date

Yes NULL

tbl_role

Name Type Collation Attributes Null Default Comments Extra
1 role_id int(10)

UNSIGNED No None

2 role_name varchar(50) utf8mb4_unicode_ci

No None

19

Name Type Collation Attributes Null Default Comments Extra
3 entry_by int(10)

UNSIGNED Yes NULL

4 entry_date datetime

No None

5 update_by int(10)

UNSIGNED Yes NULL

6 update_date datetime

No None

tbl_sms_send

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 id int(11)

No None

AUTO_INCREMEN
T

2 number varchar(150
)

latin1_swedish_
ci

No None

3 description text latin1_swedish_
ci

No None

4 entry_date date

No None

5 enrty_datetim
e datetime

No None

6 type int(11)

No None

7 code varchar(100

)
latin1_swedish_
ci

No None

8 status int(11)

No None

tbl_status

Name Type Collation Attributes Nul

l
Defaul
t

Comment
s Extra

1 status_id int(10)

UNSIGNE
D No None

AUTO_INCREMEN
T

2 status_nam
e

varchar(50
)

utf8mb4_unicode_
ci

No None

3 entry_by int(10)

UNSIGNE
D Yes NULL

4 entry_date datetime

Yes NULL

5 update_by int(10)

UNSIGNE
D Yes NULL

6 update_dat
e datetime

Yes NULL

tbl_subdiv

Name Type Collation Attribute
s

Nul
l

Defaul
t

Comment
s Extra

1 subdiv_id int(11)

No None

AUTO_INCREMEN
T

2 subdiv_name text latin1_swedish_
No None

20

Name Type Collation Attribute
s

Nul
l

Defaul
t

Comment
s Extra

ci

3 subdiv_division_i
d int(11)

No None

4 subdiv_circle_id int(11)

No None

5 enrty_by int(11)

Yes NULL

6 entry_date datetim

e
Yes NULL

7 update_by int(11)

Yes NULL

8 update_date date

Yes NULL

tbl_survey_user

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 survey_user_id int(11)

No None

AUTO_INCREME
NT

2 survey_user_na
me

varchar(5
0)

latin1_swedish_
ci

No None

3 survey_pass varchar(5
0)

latin1_swedish_
ci

No None

tbl_task

Name Type Collation Attribu

tes
Nu
ll

Defa
ult

Comme
nts Extra

1 task_id int(11)

No None

AUTO_INCREMENT
2 circle_id int(11)

No None

3 task_no varchar(1

50)
latin1_swedi
sh_ci

No None

4 division_id int(11)

No None

5 subdiv_id int(11)

No None

6 task_district int(11)

No None

7 task_quaters int(11)

No None

8 task_building int(11)

No None

9 task_apartment int(11)

No None

10 task_buildingtype int(11)

No None

11 task_user_comments text utf8_general
_ci

No None

12 task_name varchar(1
50)

latin1_swedi
sh_ci

No None

13 task_mobile varchar(1
00)

latin1_swedi
sh_ci

No None

14 task_status int(11)

No None

15 task_admin_commen text utf8_general
No None

21

Name Type Collation Attribu
tes

Nu
ll

Defa
ult

Comme
nts Extra

ts _ci
16 task_status_em int(11)

No None

17 task_admin_commen

ts_em text utf8_general
_ci

No None

18 dpt_civil int(11)

No None

19 dpt_em int(11)

No None

20 task_update_date date

No None

21 task_date date

No None

22 task_update_by int(11)

No None

tbl_task_problem_type

Name Type Collation Attribut

es
Nul
l

Defau
lt

Commen
ts Extra

1 task_problem_type
_id int(11)

No None

AUTO_INCREME
NT

2 task_type_id int(11)

No None

3 task_desc varchar(20
0)

latin1_swedish
_ci

No None

4 task_id int(11)

No None

5 department_id int(11)

No None

6 status_id int(11)

No None

7 task_comments varchar(30
0)

latin1_swedish
_ci

No None

8 allocation_for int(11)

No None

9 entry_date datetime

Yes NULL

1
0 update_by int(11)

Yes NULL

1
1 update_date datetime

Yes NULL

tbl_users_history

Name Type Collation Attribute

s
Nul
l

Defaul
t

Comment
s Extra

1 users_his_id int(11)

No None

AUTO_INCREMEN
T

2 first_name varchar(50
)

latin1_swedish_
ci

No None

3 user_last_nam
e

varchar(50
)

latin1_swedish_
ci

No None

4 email varchar(50
)

latin1_swedish_
ci

No None

5 password varchar(20 latin1_swedish_
No None

22

Name Type Collation Attribute
s

Nul
l

Defaul
t

Comment
s Extra

) ci

6 user_phnoe varchar(15
)

latin1_swedish_
ci

No None

7 entry_by int(11)

No None

8 entry_date date

No None

tbl_ustatus

Name Type Collation Attributes Null Default Comments Extra
1 ustatus_id int(11)

No None

2 ustatus_name varchar(50) latin1_swedish_ci

No None

 tree_entries

Name Type Collation Attributes Null Default Comments Extra
1 id int(10)

UNSIGNED No None

2 pid int(10)

UNSIGNED Yes NULL

3 NodeName varchar(50) utf8mb4_unicode_ci

No None

4 url varchar(50) utf8mb4_unicode_ci

No None

5 icon varchar(50) utf8mb4_unicode_ci

No None

6 view_status varchar(5) utf8mb4_unicode_ci

No None

7 created_at timestamp

Yes NULL

8 updated_at timestamp

Yes NULL

Users

Name Type Collation Attributes Nul

l
Defau
lt

Commen
ts Extra

1 id int(11)

UNSIGNE
D No None

AUTO_INCREME
NT

2 name varchar(150) latin1_swe
dish_ci

No None

3 user_last_name varchar(150) latin1_swe
dish_ci

No None

4 user_phone varchar(100) latin1_swe
dish_ci

No None

5 email varchar(150) latin1_swe
dish_ci

No None

6 user_name varchar(100) latin1_swe
dish_ci

No None

7 password varchar(200) latin1_swe
dish_ci

No None

8 user_role int(50)

No None

9 user_status varchar(50) latin1_swe
dish_ci

No None

23

Name Type Collation Attributes Nul
l

Defau
lt

Commen
ts Extra

10 user_zone int(11)

No None

11 user_circle_id int(11)

No None

12 user_division_id int(11)

No None

13 user_subdivision_i
d int(11)

No None

14 user_department int(11)

No None

15 user_designation int(11)

No None

16 remember_token varchar(100) latin1_swe

dish_ci
Yes NULL

17 picture varchar(7) latin1_swe
dish_ci

No None

18 user_entryby varchar(100) latin1_swe
dish_ci

Yes NULL

19 user_entrydate date

Yes NULL

20 user_updateby varchar(100) latin1_swe
dish_ci

Yes NULL

21 user_updatedate date

Yes NULL

user_permission

Name Type Collation Attributes Null Default Comments Extra
1 perm_id int(10)

UNSIGNED No None

2 user_id int(10)

UNSIGNED Yes NULL

3 id int(10)

UNSIGNED Yes NULL

4 pid int(10)

UNSIGNED Yes NULL

5 created_at timestamp

Yes NULL

6 updated_at timestamp

Yes NULL

_nisl_tree_entries

Name Type Collation Attributes Null Default Comments Extra
1 id int(11)

No 0

2 pid int(11)

No 0

3 NodeName varchar(50) utf8_general_ci

No

4 url varchar(200) utf8_general_ci

No

5 icon varchar(100) utf8_general_ci

No None

6 view_status varchar(5) utf8_general_ci

No

7 serials int(11)

No None

_nisl_user_permission

Name Type Collation Attributes Null Default Comments Extra

24

Name Type Collation Attributes Null Default Comments Extra
1 perm_id int(11)

No None

AUTO_INCREMENT

2 user_role int(11)

No None

3 id int(11)

No None

4 pid int(11)

No 0

25

5. Component design
“Users with appropriate permission” in the diagram refers to the users who are given
exemptions or/and users of a particular level. Precise permissions are listed in Software
requirements specification (SRS).

For diagrams with multiple functions, the design is the same for those functions, except for
parameters/methods/classes.

5.1. Login

Figure 4. Sequence diagram for Login

26

5.2. Select language

Figure 7. Activity diagram for Select language

login

select language

try login again

reply with appropriate form

done

27

Figure 8. Sequence diagram for Select language

User UserInterface Object3 Object3 Object1

login()

login()

getUserAndPassword()

acceptRejectEntry()
acceptRejectEntry()

selectLanguage()

replyWithAppropriateForm()

Done by
users with appropriate permission

28

5.3. Assign/Modify - role

Figure 14. Activity diagram for assign / modify - role

29

Figure 15. Sequence diagram for Assign / Modify - role

30

5.4. Report

Figure 27. Activity diagram for Report

login

report

try login again

Selected multiple rows to specific criteria

print

select multiplerows from table

done

31

Figure 28. Sequence diagram for Report

User UserInterface permission Bean DB_Utiles AssignMainFormResultBean

login()

login()

getUserAndPassword()

acceptRejectEntry()
acceptRejectEntry()

report()

selectMultiple()

response()

response()

print()

selectMultiple()

doneSelected()

donePrint()

Done by
users with appropriate permission

32

6. Software interface design
6.1. User interface design
UI is designed according to UI design principles.

The structure principle: UI is organized in such a way that related things are combined
together and unrelated things are separated.
The simplicity principle: It is easy to follow the provided interface. In the case of
mistake, system displays error message.
The visibility principle: All system’s functions are available through UI. It does not

overwhelm users with too many alternatives.
The feedback principle: Through the system of messages, the design keeps users
informed of actions, errors, or exceptions.
The reuse principle: In design, same names were used to perform the same operations
with different objects in order to reduce ambiguity.

6.1.1. Web pages in a tree
The system’s web pages are presented in a tree in Error! Reference source not found.31.

From “Landing” page user can reach “Main/Admin” page. From “Main” page user can reach
following pages through credentials: “Login”, “Dashboard”, “User Control (Users, User
Permission)”, “Setup(Designation, Status, ProblemType, Govt. Department, Division GEO,
District GEO, Building Class, Building Type)”, “Entry Form(Circle, Division, Subdivision,
Quarter, Building, Allottee, Apartment, Complaint)”, All Reports(Complaint Report, User
Report, Quarter Report, Building Report, Allottee Report, Summary Report, Task Report) ,
Profile. All these pages cover necessary functionality of system. It is easy to navigate
between these pages. User constantly has access to it through the menu on the left side of
page. Note: user has access to welcome page only after login, he can‟t come back to it,
because this page has descriptive characters and doesn’t have influence on functionalities of

the system.

33

Figure 32. A tree of web pages

Report

Search

Requests

Faculty and

Administration

Person

Location

License

Home

Landing

Software Design Document, CMS

34

6.1.1.1. Description
“Landing” page has descriptive characters; it contains a list of main system’s functionality
and new complaint, admin, survey, language selector information.

“New Complaint” page has descriptive characters; it contains a list of main system’s
functionality for entry of new complaint for the registered allottee.

Login page is constantly present on the top side of the screen for admin and survey
menu, which covers main functionalities of the system. After login, authenticate user can
access the dashboard.

Dashboard page open default manually after successful login and get the function of
showing the all complaint (new, InProgress, completed and canceled) of current day and
current month showing total quarter, building, apartment, and allottee. Also showing the
report several with the bar diagram.

User Control:

1. User: User has its own menu on the left of the page, which contains all
required operations that could be performed with user.

2. User Permission: User Permission has its own menu on the left of page which
contains all required operations that could be performed with user permission.

Setup:

1. Designation: User has its own menu on the left of the page, which contains all
required operations that could be performed with designation.

2. Status: User Permission has its own menu on the left of page which contains
all required operations that could be performed with status.

3. Problem type: Problem type has its own menu on the left of page which
contains all required operations that could be performed with problem type.

4. Govt. Department: Govt. Department has its own menu on the left of page
which contains all required operations that could be performed with govt.
department.

5. Division GEO: Division GEO has its own menu on the left of the page, which
contains all required operations that could be performed with division geo.

6. District GEO: User Permission has its own menu on the left of page which
contains all required operations that could be performed with district geo.

7. Building Class: Problem type has its own menu on the left of page which
contains all required operations that could be performed with building class.

8. Building type: Govt. Department has its own menu on the left of page which
contains all required operations that could be performed with building type.

Entry form:
1. Circle: Circle has its own menu on the left of the page, which contains all

Software Design Document, CMS

35

required operations that could be performed with circle.
2. Division: Division has its own menu on the left of page which contains all

required operations that could be performed with division.
3. Subdivision: Subdivision has its own menu on the left of page which contains

all required operations that could be performed with subdivision.
4. Quarter: Quarter has its own menu on the left of page which contains all

required operations that could be performed with quarter.
5. Building : Building has its own menu on the left of the page, which contains

all required operations that could be performed with building.
6. Allottee: Allottee has its own menu on the left of page which contains all

required operations that could be performed with allottee.
7. Apartment: Apartment has its own menu on the left of page which contains all

required operations that could be performed with apartment.
8. Complaint: Complaint has its own menu on the left of page which contains all

required operations that could be performed with complaint.
All Reports:

1. Complaint Report: Complaint Report has its own menu on the left of the page
under all reports section, which contains all required operations that could be
performed with complaint report.

2. Report of User: Report of user has its own menu on the left of page all reports
section which contains all required operations that could be performed with
report of user.

3. Report of user: Report of user has its own menu on the left of page under all
reports which contains all required operations that could be performed with
report of user.

4. Report of Quarter: Report of Quarter has its own menu on the left of page
under all reports which contains all required operations that could be
performed with report of quarter.

5. Report of Building : Report of Building has its own menu on the left of the
page, under all reports which contains all required operations that could be
performed with report of building.

6. Report of Allottee: Report of Allottee has its own menu on the left of page
under all reports which contains all required operations that could be
performed with report of allottee.

7. Summary Report: Summary report has its own menu on the left of page under
all reports which contains all required operations that could be performed
with summary report.

8. Task Report: Task report has its own menu on the left of page under all
reports which contains all required operations that could be performed with
task report.

Profile: Profile has its own menu on the left of page which contains all required operations
that could be performed with task report.

Software Design Document, CMS

36

Access to Information Idea(A2I) [Webpage]

Dashboard page open default manually after successful login and get the function of
showing the all complaint (new, InProgress, completed and canceled) showing the report
several with the bar diagram.

Total Complaint: Total Complaint has its own menu on the left of page which contains all
required operations that could be performed with total complaint
Total Complaint of this month: Total Complaint of this month has its own menu on the
left of page which contains all required operations that could be performed with total
complaint of this month.
New Complaint: New Complaint has its own menu on the left of page which contains all
required operations that could be performed with new complaint.

New Complaint of this month: New Complaint of this month has its own menu on the left
of page which contains all required operations that could be performed with new
complaint of this month.

In progress Complaints: In Progress Complaints has its own menu on the left of page
which contains all required operations that could be performed with in progress
complaints.

Completed Complaint: Complete Complaint has its own menu on the left of page which
contains all required operations that could be performed with complete complaint.

Canceled Complaint: Canceled Complaint has its own menu on the left of page which
contains all required operations that could be performed with canceled complaint.

Change Password: Change Password has its own menu on the left of page which contains
all required operations that could be performed with change password.

Software Design Document, CMS

37

1.1.1.2. Objects and Actions
In the “Landing” page there is a button named admin ,after clicking the admin login area,
user provides login and password in appropriate text boxes and confirms this operation,
clicking on button “Sign in”. Also user has opportunity to select language from menu.
After logging “Dashboard” page is available to user. It contains following menu: ““User
Control (Users, User Permission)”, “Setup(Designation, Status, ProblemType, Govt.
Department, Division GEO, District GEO, Building Class, Building Type)”, “Entry
Form(Circle, Division, Subdivision, Quarter, Building, Allottee, Apartment, Complaint)”,
All Reports(Complaint Report, User Report, Quarter Report, Building Report, Allottee
Report, Summary Report, Task Report) , Profile, “Logout”. User clicks on necessary item
in the menu in order to transfer in the next page.
Page “Users Control” has menu with submenus on the left of the page:

1. Users:
• Add new
• View
• Search with 10 fields.
• Edit

2. User Permission:
• Permission

3. Setup
 Designation:

• Add new
• View
• Edit

 Status:
• Add new
• View
• Edit

 Problem Type:
• Add new
• View
• Edit

 Govt. Department:
• Add new
• View
• Edit

 Division GEO:
• Add new
• View
• Edit

Software Design Document, CMS

38

 District GEO:
• Add new
• View
• Edit

 Building Type :
• Add new
• View
• Edit

4. Entry Form
 Circle:

• Add new
• View
• Edit

 Division:
• Add new
• View
• Edit
• Search with two fields

 Subdivision:
• Add new
• View
• Edit
• Search with three fields

 Quarter:
• Add new
• View
• Edit
• Search with Five Fields

 Building:
• Add new
• View
• Edit
• Search with Five Fields

 Allottee:
• Add new
• View
• Edit
• Search with Five Fields

 Apartment :
• Add new
• View
• Edit

Software Design Document, CMS

39

• Search with Five Fields
 Complaint :

• View
• Update only for SDE
• Search with Eight Fields

5. All Reports
 Complaint Report:

• Search with Eight Fields
• View
• Print with PDF
• Download or Export with Excel

 Report of User :
• Search with Ten Fields
• View
• Print with PDF
• Download or Export with Excel

 Report of Quarter:
• Search with Five Fields
• View
• Print with PDF
• Download or Export with Excel

 Report of Building:
• Search with Five Fields
• View
• Print with PDF
• Download or Export with Excel

 Report of Building:
• Search with Four Fields
• View
• Print with PDF
• Download or Export with Excel

 Report of Allottee:
• Search with Four Fields
• View
• Print with PDF
• Download or Export with Excel

 Profile:
• Change Name, Email, password and Picture

User clicks on necessary item in the menu in order to perform operation. Description of
operation can be found in the Use Cases.
In addition user can perform next actions:

see all available fields and records in the table, using scroll bar;

Software Design Document, CMS

40

set a filter selecting type of asset from drop down menu in the group “Filter”
and then clicking button “Search”;

 hide/show columns in the table by clicking link “Hide/Show” next to the name of
field;

 perform basic search for current page putting string in appropriate text box and
clicking button “Search”;

 edit record in the table by clicking link “Edit” next to the appropriate record;

User clicks on necessary item in the menu in order to perform operation. Description of
operation can be found in the Use Cases.

Page “Search” allows to user perform Basic search and advanced search. Page contains text
box for searched string, button “Search”, table with names of databases and fields where on
each page.

1.1.2. User interface
Used GUI components are menus, submenus, buttons, text boxes, check boxes, down drop
lists, links, and tables. The only means of access to the entire database, by all users, is
through this UI.

1.1.2.1. Screen image
Some examples of UI are presented below:

Landing page:
This is the landing or welcome page of the Complaint Management System(CMS).
Allottee, User, Survey user can access to their specific menu.

Figure: Landing main page of CMS.

Software Design Document, CMS

41

New Complaint: This menu is used for allottee to complain to SDE (Sub divisional Engineer).

Complaint Form for Allottee : After clicking new complaint this section is appeared on web
page and registered can access this form by selecting every credential information as district,
quarter, building, flat, building type, name, mobile email(if any), problem type, problem
description.

Review Form for Allottee : After clicking new complaint successfully this is the review page
and get a new code for validation the real allottee. Then putting the real code and sending the
final submission.

Software Design Document, CMS

42

Login: This Login page is for PWD Login, To reach the panel dashboard this page is used for
user authentication.

Dashboard
Today’s Complaints
New Complain: It shows the no. of today’s complaint.
In Progress Complaint: It shows the no. of today’s in progress complaint.

Software Design Document, CMS

43

Completed Complaint: It shows the no. of complaint which have been completed
today.
Canceled Complaint: It shows the no. of complaint which have been canceled
today.

This Month’s Complaints
New Complain: It shows the no. of complaint for running month.
In Progress Complaint: It shows the no. of in progress complaint for running
month.
Completed Complaint: It shows the no. of complaint which have been completed
during running month.
Canceled Complaint: It shows the no. of complaint which have been canceled
during running month.

Total Quarters, Buildings, Apartments and Allottees
Total Quarters: It shows the total number of quarters.
Total Building: It shows the total number of buildings.
Total Apartments: It shows the total number of apartments.
 Total Allottees: It shows the total number of allottees.
Complains: This graph shows the overall view of all complaints.
This Month History: This graph shows the running month complaints history.
All Complaints By Month: This graph shows all complaints monthly.
All Complaints By Year: This graph shows all complaints yearly.
All Building By Type: This graph shows all buildings chart as their type

Software Design Document, CMS

44

Software Design Document, CMS

45

User Control
3.1 User :

From this section, users can be added or managed.
Click +Add new User icon to add a new user.

After clicking +Add new user icon, a new box will be showed.

In this box, input new user’s all information and submit it.
If you want to see all users, click Search option.

Software Design Document, CMS

46

If you want to see a specific user, then input his name and click this Search option.

If you want to edit a specific user, input his name and click this Search option. Then
click edit option and edit as you want.

3.2 User Permission:

From this section, you can give the access permission of anything to any user as their
category.

Software Design Document, CMS

47

After clicking permission option, a new box will show. From this box, give
permission by clicking these options (if you want) and update it.

Software Design Document, CMS

48

Setup

4.1 Designation

From this section, you can add or edit designation for the users.
Click + Add new Designation option to add new.

A new box will be come. Then input here the new designation and submit it.

If you want to edit any designation, then click the edit option, edit it and update it.

Software Design Document, CMS

49

4.2 District

From this section, you can add or edit district name for the users.
Click + Add new District option to add new.

A new box will be come. Then input here the new district and submit it.

If you want to edit any district name, then click the edit option, edit it and update it.

Software Design Document, CMS

50

4.3 Status

From this section, you can add or edit status name for the users.
Click + Add new Status option to add new.

A new box will be come. Then input here the new status and submit it.

If you want to edit any status name, then click the edit option, edit it and update it.

Software Design Document, CMS

51

4.4 Problem Type

From this section, you can add or edit problem type for the users.
Click + Add new Problem Type option to add new.

A new box will be come. Then input here the new problem name, department, and
maximum day to solve this problem and submit it.

If you want to edit any problem type name, then click the edit option, edit it and
update it.

Software Design Document, CMS

52

4.5 Govt. Department

From this section, you can add or edit govt. department for the users.
Click + Add new govt. department option to add new.

A new box will be come. Then input here the new govt. department name and submit
it.

If you want to edit any govt. department’s name, then click the edit option, edit it and
update it.

Software Design Document, CMS

53

4.6 Division GEO

From this section, you can add or edit division geo for the users.
Click + Add new division geo option to add new.

A new box will be come. Then input here the new division geo name and submit it.

If you want to edit any division geo’s name, then click the edit option, edit it and
update it.

Software Design Document, CMS

54

4.7 District GEO

From this section, you can add or edit district geo for the users.
Click + Add new district geo option to add new.

A new box will be come. Then input here the new district geo name, division name
and district website and then submit it.

If you want to edit any district geo’s name, then click the edit option, edit it and
update it.

Software Design Document, CMS

55

4.8 Thana Entry

From this section, you can add or edit thana name for the users.
Click + Add new thana option to add new.

A new box will be come. Then input here the new thana name, division name and
district name and then submit it.

If you want to edit any thana’s name, then click the edit option, edit it and update it.

Software Design Document, CMS

56

4.9 Building Class

From this section, you can add or edit building class name for the users.
Click + Add new building class option to add new.

A new box will be come. Then input here the new building class name and then
submit it.

If you want to edit any building class’s name, then click the edit option, edit it and
update it.

Software Design Document, CMS

57

4.10 Building Type

From this section, you can add or edit building type for the users.
Click + Add new building type option to add new.

A new box will be come. Then input here the new building type and then submit it.

If you want to edit any building type’s, then click the edit option, edit it and update it.

Software Design Document, CMS

58

Entry Form
5.1 Circle
From this section, you can add or edit circle for the users.
Click + Add new Circle option to add new.

A new box will be come. Then input here the new circle name and submit it.

If you want to edit any circle’s name, then click the edit option, edit it and update it.

Software Design Document, CMS

59

Division
From this section, you can add or edit division for the users.
Click + Add new Division option to add new.

A new box will be come. Then input here the new division name and circle name and
then submit it.

You can search a specific circle or division to check or edit. To do this, write the
circle name in the circle box, then division name in the division box and then click
Search option.

Software Design Document, CMS

60

If you want to edit any division’s name, then click the edit option, edit it and update
it.

Sub Division

From this section, you can add or edit sub-division for the users.
Click + Add new Subdivision option to add new

A new box will be come. Then input here the new subdivision name and circle name
and then submit it.

Software Design Document, CMS

61

You can search a specific circle, division or subdivision to check or edit. To do this,
write the circle name in the circle box, division name in the division box and
subdivision name in the subdivision box and then click Search option.

If you want to edit any subdivision’s name, then click the edit option, edit it and
update it.

Quarters
From this section, you can add or edit quarters name for the users.
Click + Add new Quarter option to add new.

Software Design Document, CMS

62

A new box will be come. Then input here the new quarter name and choose circle
name, division name, district name and subdistrict name from the drop down menu
and then submit it.

You can search a specific circle, division, subdivision, quarter or district to check or
edit. To do this, select the circle name, division name, subdivision name, quarter
name and district name from the drop down box and then click Search option.

If you want to edit any quarter’s name, then click the edit option, edit it and update it.

Software Design Document, CMS

63

Building

From this section, you can add or edit buildings name for the users.
Click + Add new building option to add new.

A new box will be come. Then input here the new building name and choose quarter
name and building type from the drop down box and then submit it.

You can search a specific circle, division, subdivision, quarter or building to check or
edit. To do this, select the circle name, division name, subdivision name, quarter
name and district name from the drop down box and then click Search option.

Software Design Document, CMS

64

If you want to edit any building’s name, then click the edit option, edit it and update
it.

Allottee
From this section, you can add or edit allottees name for the users.
Click + Add new allottee option to add new.

Software Design Document, CMS

65

A new box will be come. Then input here the new allottee’s name and other
information of the allottee and then submit it.

You can search a specific circle, division, subdivision, quarter or building to check or
edit. To do this, select the circle name, division name, subdivision name, quarter
name and district name from the drop down box and then click Search option.

Software Design Document, CMS

66

If you want to edit any allottee’s name or other information, then click the edit
option, edit it and update it.

Apartment
From this section, you can add or edit apartment’s name for the users.
Click + Add new apartment option to add new.

A new box will be come. Then input here the new apartment’s name and other
information and then submit it

Software Design Document, CMS

67

You can search a specific circle, division, subdivision, quarter or building to check or
edit. To do this, select the circle name, division name, subdivision name, quarter
name and district name from the drop down box and then click Search option.

If you want to edit any apartment’s name or other information, then click the edit
option, edit it and update it.

Complain

From this section, you can check and update the status of complaints of the users.
Fill up the boxes as you want to check complaints and click search option.

Software Design Document, CMS

68

If you want to update the status of any complaint, then click the update option.

A new box will be come. Here you will see all the information of the complaint.
From here you can update the status of complaint. Select the status from the Status
option, write any comment about the complaint and click update.

Software Design Document, CMS

69

All Reports

Complaint Reports
From this section, you can check, download or print any kinds of complaints reports.
Fill up all the boxes and click Show Report to check the reports, click Excel to
download this reports as Excel file and click print to print this report.

Software Design Document, CMS

70

Report of User
From this section, you can check, download or print any kinds of users reports.
Fill up all the boxes and click Submit to check the users reports, click Excel to
download this reports as Excel file and click print to print this report.

Software Design Document, CMS

71

Report of Quarter
From this section, you can check, download or print any kinds of quarters reports.
Fill up all the boxes and click Submit to check the quarters reports, click Excel to
download this reports as Excel file and click print to print this report.

Report of Building
From this section, you can check, download or print any kinds of buildings reports.
Fill up all the boxes and click Submit to check the buildings reports, click Excel to
download this reports as Excel file and click print to print this report.

Software Design Document, CMS

72

Report of Allottee
From this section, you can check, download or print any kinds of allottee reports.
Fill up all the boxes and click Submit to check the allottee reports, click Excel to
download this reports as Excel file and click print to print this report.

Summary Report
From this section, you can check, download or print any kinds of summary report.
Fill up all the boxes and click Submit to check the summary report, click Excel to
download this reports as Excel file and click print to print this report.

Software Design Document, CMS

73

Task Report
From this section, you can check, download or print any kinds of task report.
Fill up all the boxes and click Submit to check the task report, click Excel to
download this reports as Excel file and click print to print this report. This report
show all information of Task.

Profile:
This section is for only login user to change his profile as First Name, Last name, Email,
mobile with picture and can change the current password.

Software Design Document, CMS

74

Access to Information Idea(A2I)’s Page Layout [Web Page]
Login: This Login page is for A2I survey Login, To reach the Survey panel dashboard this
page is used for user authentication.

Dashboard: This dashboard is for Survey Panel /A2I , This page is included Total Complaint,
Complaint of this month, Total New Complaint, Total New complaint of this month, Total
InProgress Complaint, Total completed complaint, Total Canceled complaints, Calendar,
Complaint by chart, Complaint of this month chart, Complaint by month with chart and
complaint by year with chart.

Software Design Document, CMS

75

Total Complaint Information Report:
From this section, you can check, download or print any kinds of total complaint
information reports.Fill up all the boxes and click Submit to check the following
reports, click Excel to download this reports as Excel file and click print to print this
report.

Total Complaint of running month Information Report:
From this section, you can check, download or print any kinds of total complaint of

Software Design Document, CMS

76

running month information reports. Fill up all the boxes and click Submit to check
the following reports, click Excel to download this report as Excel file and click print
to print this report.

Total New Complaint Information Report:
From this section, you can check, download or print any kinds of total new complaint
information reports. Fill up all the boxes and click Submit to check the following
reports, click Excel to download this report as Excel file and click print to print this
report.

Total New Complaint running month Information Report:
From this section, you can check, download or print any kinds of total new complaint

Software Design Document, CMS

77

running month information reports. Fill up all the boxes and click Submit to check
the following reports, click Excel to download this report as Excel file and click print
to print this report.

Total In Progress Complaint Information Report:
From this section, you can check, download or print any kinds of total in progress
complaint running month information reports. Fill up all the boxes and click Submit
to check the following reports, click Excel to download this report as Excel file and
click print to print this report.

Total Completed Complaint Information Report:
From this section, you can check, download or print any kinds of total completed

Software Design Document, CMS

78

complaint information reports. Fill up all the boxes and click Submit to check the
following reports, click Excel to download this report as Excel file and click print to
print this report.

Total Canceled Complaint Information Report:
From this section, you can check, download or print any kinds of total canceled
complaint information reports. Fill up all the boxes and click Submit to check the
following reports, click Excel to download this report as Excel file and click print to
print this report.

Change Password:

Software Design Document, CMS

79

This section is for survey / a2i panel. If the survey user want to change the password , he/she
can easily change the password by providing existing password for security reason.

Forget Password Page: This page is for getting the existing password recovery using proper
validation.

Software Design Document, CMS

80

Forget Password Page: This page is for getting the existing password recovery using proper
validation.

Software Design Document, CMS

81

6.2. Module interface design
Module design maintains MVC (Model – View - Controller) architecture. View is a UI.
Through UI user inputs data which goes to Controller. Controller transfers data into Model.
If data is incorrect Model shows error message. Otherwise it processes the request,
prepares the result and sends it to the Controller. Finally, Controller transfers generated
code into View. The user views the result.

General principle of MVC (Model – View - Controller) architecture can be described with
sequential diagram.

Software Design Document, CMS

82

Figure - Sequence diagram of MVC (Model – View - Controller) architecture

Software Design Document, CMS

83

The Laravel class have two types of class one is Model Class and the other is Controller Class.
The Model Class interact with the database table
class Allottee extends Model { }: Used the protected variable of “tbl_allottee”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class Apartment extends Model { }: Used the protected variable of “tbl_apartment”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class Building extends Model { }: Used the protected variable of “tbl_building”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class BuildingType extends Model { }: Used the protected variable of “tbl_buildingtype”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class Circle extends Model { }: Used the protected variable of “tbl_circle”, used public variable
timestamps, used the protected fillable field of selected table variable also used protected
hidden field(if any).
class Department extends Model { }: Used the protected variable of “tbl_department”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class District extends Model { }: Used the protected variable of “tbl_district”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class DistrictGEO extends Model { }: Used the protected variable of “tbl_districtgeo”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class Division extends Model { }: Used the protected variable of “tbl_division”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class DivisionGEO extends Model { }: Used the protected variable of “tbl_divisiongeo”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class GovernmentDepartment extends Model { }: Used the protected variable of
“tbl_govt_department”, used public variable timestamps, used the protected fillable field of
selected table variable also used protected hidden field(if any).
class Problem extends Model { }: Used the protected variable of “tbl_problemtype”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).

Software Design Document, CMS

84

class Quarter extends Model { }: Used the protected variable of “tbl_quarters”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class Rank extends Model{ }: Used the protected variable of “tbl_rank”, used public variable
timestamps, used the protected fillable field of selected table variable also used protected
hidden field(if any).
class Status extends Model{ }: Used the protected variable of “tbl_status”, used public variable
timestamps, used the protected fillable field of selected table variable also used protected
hidden field(if any).
class Subdivision extends Model{ }: Used the protected variable of “tbl_subdivision”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class Survey extends Model{ }: Used the protected variable of “tbl_survey_user”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class TaskReport extends Model{ }: Used the protected variable of “tbl_task”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class TblTask extends Model{ }: Used the protected variable of “tbl_task”, used public variable
timestamps, used the protected fillable field of selected table variable also used protected
hidden field(if any).
class Thana extends Model { }: Used the protected variable of “tbl_thana”, used public variable
timestamps, used the protected fillable field of selected table variable also used protected
hidden field(if any).
class User extends Authenticatable { }: Used the protected variable of “users”, used public
variable timestamps, used the protected fillable field of selected table variable also used
protected hidden field(if any).
class designation extends Model{ }: Used the protected variable of “tbl_designation”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).
class tbl_trees extends Model{ }: Used the protected variable of “_nisl_tree_entries”, used
public variable timestamps, used the protected fillable field of selected table variable also
used protected hidden field(if any).

Software Design Document, CMS

85

The Controller Class interact with the various action using functions
class AllotteeController extends Controller { } : Controllers are typically stored in
app/controllers directory. This contains several methods to act several actions The methods
are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• index() : This method returns various columns of data from different tables
using leftjoin query and redirect the allottee view page.

• insertAllottee () : This method used for insert the allottees’ information in the
database table.

• updateAllottee (): This method used for update the allottees’ information in the
database table.

• getAllotteeModal (): This method used for opeing the allottees’ form with Modal
popup.

class AllotteeReportController extends Controller { } : This class Controller is typically used
for allottee report related functionality .This contains several methods to act several actions
The methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• AllotteeSearch (): This method used for searching the allottees’ information
from the database table using mysql query.

class ApartmentController extends Controller { } : This class Controller is typically used for
apratment related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• getFlat (): This method used for getting the flat from the flat table information
from the database table using mysql query.

• getApartmentModal (): This method used for opeing the apartment form with
Modal popup.

• insertApartment () : This method used for insert the apartment information in
the database table.

Software Design Document, CMS

86

• updateApartment () : This method used for update the apartment information
in the database table.

• ApartmentSearch () : This method used for searching the apartment
information from the database table using MySQL query.

class BuildingController extends Controller { } : This class Controller is typically used for
Builiding related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• getBuildingName (): This method used for getting the building name from the
building name table information from the database table using MySQL query.

• getBuildingType (): This method used for get building type from building type
table.

• getBuilding () : This method used getting the building name from the building
name table information from the database table using MySQL query.

• getBuildingModal () : This method used for opeing the building form with
Modal popup.

• insertBuilding () : This method used for insert the building information in the
database table.

• updateBuilding () : This method used for update the building information in
the database table.

• getBuildingSearch (): This method used for searching the building information
from the database table using MySQL query.

• getBuildingReport (): This method used for report the building information
from the database table using MySQL query.

class BuildingTypeController extends Controller { } : This class Controller is typically used for
BuildingType related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• getBuildingType (): This method used for getting the building name from the
building type name table information from the database table using MySQL
query.

Software Design Document, CMS

87

• getBuildingtypeforintro (): This method used for get building type from
building type table.

• getBulildingTypeModal () This method used for opeing the building type form
with Modal popup.

• insertBuildingtype () : This method used for insert the building type
information in the database table.

• updateBuildingtype () : This method used for update the building type
information in the database table.

class CircleControllerextends Controller { } : This class Controller is typically used for Circle
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• getCircleDropdown (): This method used for getting the building name from the
building type name table information from the database table using MySQL
query.

• getCircleModal () This method used for opeing the circle form with Modal
popup.

• insertCircle () : This method used for insert the circle information in the
database table.

• updateCircle () : This method used for update the circle information in the
database table.

class ComplaintController Extends Controller { } : This class Controller is typically used for
Complainrelated functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• getComplainSearch (): This method used for searching the building information
from the database table using MySQL query

• getComplainModal () This method used for opeing the complaint form with
Modal popup.

• getTaskShowModal () : This method used for getting the task information from
the database table.

Software Design Document, CMS

88

• updateComplain () : This method used for update the complain information in
the database table.

class DepartmentController Extends Controller { } : This class Controller is typically used for
Department related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• getDepartment () : This method (default) returns getting the department to the
view page.

class DesignationController Extends Controller { } : This class Controller is typically used for
Designation related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertDesignation (): This method used for insert the designation information
in the database table.

• getDesignationModal () This method used for opeing the designation form with
Modal popup.

• updateDesignation () : This method used for update the designation
information in the database table.

class DistrictControllerExtends Controller { } : This class Controller is typically used for
District related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertDistrict (): This method used for insert the district information in the
database table.

• getDistrictModal () : This method used for opeing the district form with Modal
popup.

• updateDistrict () : This method used for update the district information in the
database table.

• getDistrict () : This method used for getting the district for other related task.

Software Design Document, CMS

89

class DistrictGEOController Controller { } : This class Controller is typically used for
DistrictGEO related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertDistrictGEO (): This method used for insert the districtGEO information
in the database table.

• districtGEOModal () : This method used for opeing the districtGEO form with
Modal popup.

• updateDistrictGEO () : This method used for update the districtGEO
information in the database table.

• findDistrictGEO () : This method used for getting the districtGEO for other
related task.

• findDistrictGEOforallottee () : This method used for getting the districtGEO for
allottee related task.

class DivisionController extends Controller { } : This class Controller is typically used for
Division related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertDivision (): This method used for insert the division information in the
database table.

• getDivisionModal () : This method used for opeing the division form with Modal
popup.

• updateDivision () : This method used for update the division information in the
database table.

class DivisionGEOController extends Controller { } : This class Controller is typically used for
DivisionGEO related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

Software Design Document, CMS

90

• Index () : This method (default) returns redirect to the view page.

• insertDivisionGEO (): This method used for insert the DivisionGEO
information in the database table.

• divisionGEOModal () : This method used for opeing the DivisionGEO form with
Modal popup.

• updateDivisionGEO () : This method used for update the DivisionGEO
information in the database table.

class GovernmentDepartmentController extends Controller { } : This class Controller is
typically used for government department related functionality .This contains several
methods to act several actions The methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insetGovtDepartment (): This method used for insert the government
department information in the database table.

• govtDepAddModal () : This method used for opeing the government department
form with Modal popup.

• updateGovtDept () : This method used for update the government department
information in the database table.

class ProblemController extends Controller { } : This class Controller is typically used for
problem related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertProblem (): This method used for insert the problem information in the
database table.

• getProblemTypeModal () : This method used for opeing the problem form with
Modal popup.

• updateProblem () : This method used for update the problem information in the
database table.

• getProblemType () : This method used for update the problem information in
the database table.

class ProfileController extends Controller { } : This class Controller is typically used for
problem related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

Software Design Document, CMS

91

• Index () : This method (default) returns redirect to the view page.

• store (): This method used for insert the Profile image information in the
database table.

• insertProfileChange () : This method used for insert the Profile information in
the database table.

class QuarterController extends Controller { } : This class Controller is typically used for
Quarter related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertQuarter (): This method used for insert the quarter information in the
database table.

• insertDesignation (): This method used for insert the designation information
in the database table.

• getQuaterModal () : This method used for opeing the quarter form with Modal
popup.

• updateQuarter () : This method used for update the quarter information in the
database table.

• getQuarters () : This method used for update the quarter information in the
database table.

• getQuarterfor (): This method used for retrieving the quarter list for other
controller purposes.

• Quarterreport() : This method used for getting the quarter report .

• getQuarterSearch () : This method used for getting quarter search.

• QuarterSearch () : This method used for getting quarter search for a2i.
• insertquarterSup () : This method used for insert quarter supervisor or SDE for

assigned employee.

• deleteEmp () : This method is used for delete SDE form quarter list.

class RankController extends Controller { } : This class Controller is typically used for rank
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertRank (): This method used for insert the rank information in the

Software Design Document, CMS

92

database table.

• getRankModal () : This method used for opeing the rank form with Modal
popup.

• updateRank () : This method used for update the rank information in the
database table.

class ReportController extends Controller { } : This class Controller is typically used for rank
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• getReportSearch (): This method used for searching the report information.

class StatusController extends Controller { } : This class Controller is typically used for status
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertStatus (): This method used for insert the status information in the
database table.

• getStatusModal () : This method used for opeing the status form with Modal
popup.

• updateStatus () : This method used for update the status information in the
database table.

class SubdivisionController extends Controller { } : This class Controller is typically used for
subdivision related functionality .This contains several methods to act several actions The
methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertSubdivision (): This method used for insert the subdivision information in
the database table.

• getSubdivisionModal () : This method used for opeing the subdivision form with
Modal popup.

• updateSubdivision () : This method used for update the subdivision information
in the database table.

Software Design Document, CMS

93

class SummaryReportController extends Controller { } : This class Controller is typically used
for sunnaryreport related functionality .This contains several methods to act several actions
The methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• SummaryReport (): This method used for summary report of various table
using MYSQL query.

class TaskReportController extends Controller { } : This class Controller is typically used for
taskfg related functionality .This contains several methods to act several actions The methods
are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.
• TaskReportSearch (): This method used for searching task related all

information using MYSQL query.

class ThanaController extends Controller { } : This class Controller is typically used for thana
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• insertThana (): This method used for insert the thana information in the
database table.

• getThanaModal () : This method used for opeing the thana form with Modal
popup.

• updateThana () : This method used for update the thana information in the
database table.

• findThanaforallottee () : This method used for find thana for the allottee
information .

class UserController extends Controller { } : This class Controller is typically used for user
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• public function __construct (): This construct method is used for using several

Software Design Document, CMS

94

middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.

• userpermission (): This method used for send the data of users to the user view
.

• circleview () : This method used for getting the circle for the user entry.

• findDivisionName () : This method used for getting the circle for the user entry.

• findSDEcivil () : This method used for getting the SDE for the user entry..

• findSDEcv (): This method used for getting the SDE civil for the user entry.

• findEECivil (): This method used for getting the-EE civil for the user entry.
• findEEem () : This method used for getting the SDE -em for the user entry.

• getSECivil(): This method used for getting the SE Civil for the user entry.

• findSDEem() : This method used for getting the SDE -EE for the user entry.

• getSECivilMobile (): This method used for getting the SE-civil mobile for the
user entry.

• getSDEemMobile (): This method used for getting the SDE -Em mobile for the
user entry.

• getSEem (): This method used for getting the SE -Em for the user entry.

• getSEemMobile () : This method used for getting the SE -Em mobile for the
user entry.

• getSDECivilMobile (): This method used for getting the SDECivilMobile for the
user entry.

• getEEemMobile () : This method used for getting the EE Mobile for the user
entry.

• getEECvilMobile () : This method used for getting the EE Civil Mobile for the
user entry.

• findsubDivisionName (): This method used for getting the Subdivision name
for the user entry.

• userInsert () : This method used for insert the user information in the database
table.

• findUserForUpdate () : This method used for update the user information in the
database table.

• getUserModal () : This method used for opeing the user form with Modal
popup.

• UserSearch (): This method used for searching the user.

• userReport () : This method used for report of the users.

• UserSearchwithEdit () : This method used for user search for edit of the users.

Software Design Document, CMS

95

• checkUserName (): This method is used for check User Name that username
availability.

class UserPermissionController extends Controller { } : This class Controller is typically used
for users permission related functionality .This contains several methods to act several
actions The methods are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• Index () : This method (default) returns redirect to the view page.
• insertPermission (): This method used for insert the users permission

information in the database table.

• getuserpermissionmodal () : This method used for opeing the users permission
form with Modal popup.

class AjaxController extends Controller { } : This class Controller is typically used for ajax
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• getAllotteeModal (): This method used for opeing the allottee form with Modal
popup.

• getEmployee () : This method used for getting the employees/users .
• findDivisionNamee () : This method used for getting the division.

• findsubDivisionNamee () : This method used for getting the sub division.

• findQuarters ():This method used for getting the quarters.

• findBuildings () : This method used for getting the buildings.

• getReportSearchs (): This method used for getting the Report search.
• findDistrictGEO () : This method used for getting the Report search.

• divSearchFunction (): This method is used for division search .

• subDivSearch (): This method is used for sub-division search .

• findemployee () : This method used for getting the employees/users .

• findGEOdistrict (): This method used for getting the district geo .
• findGEOthana () : This method used for getting the thana.

• getSdeinfo () : This method used for getting the sde info of employees/users .

class CustomAuthController extends Controller { } : This class Controller is typically used for
ajax related functionality .This contains several methods to act several actions The methods
are given bellow with the functionality.

• login (): This method used for login for the users .

Software Design Document, CMS

96

• Logout () :This method used for logout/ session destroy task.

class CustomHomeController extends Controller { } : This class Controller is typically used for
ajax related functionality .This contains several methods to act several actions The methods
are given bellow with the functionality.

• public function __construct (): This construct method is used for using several
middleware for accessing / permission of various methods in this class.

• index (): This method (default) returns redirect to the view page.

• back_top () :This method returns redirect to admin login panel.

• Home () : This method returns redirect to admin dashboard.
class ForgetController extends Controller { } : This class Controller is typically used for ajax
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• index (): This method (default) returns redirect to the forget password view
page.

• checking () :This method returns redirect to forget password page if name and
password checking wrong.

• confirmchecking () : This method returns redirect to confirm checking page .

• Checkpin () : This method checks the SMS pin verification for forget password.

• Checkingconfirm () : This method checks after giving the pin number is correct
or wrong.

class HomeController extends Controller { } : This class Controller is typically used for ajax
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• index (): This method (default) returns redirect to landing page.
class ItemController extends Controller { } : This class Controller is typically used for ajax
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• pdfview (): This method (default) returns to generate to pdf page.
class LanguageController extends Controller { } : This class Controller is typically used for
ajax related functionality .This contains several methods to act several actions The methods
are given bellow with the functionality.

Software Design Document, CMS

97

• changeLanguage (): This method return to change the language English to
Bangla or vice versa.

class SubmitController extends Controller { } : This class Controller is typically used for ajax
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• index (): This method used for sending data to review page in confirm submit
page.

• getQuartersforDistrict () : This method is used for get quarter for district wise.
• getBuildingforintro () : This method is used for getting building according to

quarter wise.

• getFlatforIntro () : This method is used for getting flat according to building
wise.

• getBuildingTypeforintro ():: This method is used for getting building type
according to building.

• getAllotteeinfo () : This method is used for getting allottee according to
apartment.

• checkdata (): This method used for checking the complaint generated pin.
• InsertComplainforintro () : After successfully complaint form this method is

used to insert the complaint and send the sms api to SDE and allottees for final
confirmation and generating the ticket.

• ticketChecking () : This method is used for ticket checking of allottees’ complint
with getting the send ticket no.

class SurveyController extends Controller { } : This class Controller is typically used for ajax
related functionality .This contains several methods to act several actions The methods are
given bellow with the functionality.

• index (): This method used to return redirect to survey login panel.
• login () : This method is used to return redirect to successful login.

• servey_home () : This method is used to redirect to survey dashboard.

• logout (): This method is used for logout and destroy the session.

• totalcomplain () : This method is used for total complaint report for survey.

• totalcomplainthismonth () : This method is used for total complaint report of
this current month for survey.

• newComplain(): This method is used for new complaint report for survey.

• newComplainThisMonth () : This method is used for new complaint report of
this current month for survey.

• InProgressProblem (): This method is used for in progress complaint report for
survey.

Software Design Document, CMS

98

• CompleteComplains () : This method is used for completed complaint report for
survey.

• CancelComplains (): This method is used for canceled complaint report for
survey.

• Changepasssword (): This method is used for change password for the survey.

• Checkpassword () : This method is used to change password for the survey.

• updatePassword (): This method is used to update password for the survey.

Software Design Document, CMS

99

7. Class diagram
7.1. Basic folders for class diagram

search_pages
request_pages

report_pages

allottee_pagesflat_pages

admin_pages

assets_pages

utiles

Software Design Document, CMS

100

7.2 Basic class diagram
Classes are used to capture the vocabulary of a system. They represent software things,
hardware things, and even things that are purely conceptual. The classes for the complaint
management system were identified through iterative brainstorming with the users. Table
shows the complaint management system’s classes identified with their respective
descriptions.
No Class name Description
1 Allotee A class to hold details of allottee.
2 Complaints A class to hold details about complaints.
3 Users A class to hold username, password and other

user account details.
4 Employees A class to contain employee information,

including their backgrounds.
5 Assignments A class to hold complaints’ assignment to

employees, in order to provide resolutions.
6 Resolutions A class to hold resolutions for complaints.
7 Departments A class to hold details about departments.

A class diagram of the Unified Modeling Language (UML) is a type of static structure diagram
that describes the structure of a system by showing the system's classes, their attributes, their
methods, and the relationships among them. The class diagram is the main building block of
the object-oriented modeling. It is used both for general conceptual modeling of the systematic
of the application. Class diagrams are used for data modeling. The class diagram of the system
is shown in the figure

Complaints

• PK: id: int
• Complaint: text
• Date: datetime
• Status: text
• Type: text

• Submit(): void
• Edit(): complaint
• Delete(): void
• Resolve(): resolution

Resolutions

• PK: id: int
• Resolution: text
• FK: complaint_id: int
• FK: employee_id: int

• Add(): void
• Edit(): resolution
• Delete(): void

Assignments

• PK: id: int
• Date: datetime
• Status: text
• FK: complaint_id: int
• FK: employee_id: int

• Add(): void
• Edit(): assignment
• Delete(): void

Employees

• PK: id: int
• position: text
• background: text
• rating: double
• complaint_count: int

• Edit(): users
• Delete(): void

Users

• PK: id: int
• full_name: text
• username: varchar(55)
• password: text
• email: varchar(55)

• Register(): void
• Edit(): user
• Delete(): void
• Login(): user_id
• Logout(): voidDepartments

• PK: id: int
• name: text
• Description: text
• complaint_count: int

• Add(): void
• Edit(): department
• Delete(): voidpersonnel_complaints

• FK: employee_id: int
• FK: complaint_id: int

department_complaints

• FK: department_id: int
• FK: complaint_id: int

1:* *:1
Received/submit

1:1

1:1

are

1:*

*:1

work for

1:* *:1
give

*:1

1:*

are assigned to

1:1

1:1

has

are

1:1

1:1

Allottee

• PK: id: allottee_id
• apartment_id: int
• apartment_name:

varchar
• date: datetime
• status: varchar
• FK: user_id: int
• Add(): void
• Edit(): question
• Delete(): void

1:**:1

Software Design Document, CMS

101

8. Implement and Testing

A. Setup and Configuration
Installation:

1. Install Linux Centos 7.2.
2. Include MySQL database in installer.
3. After installation of OS following components have to be installed:

1. phpMyAdmin (ver.3.2.3) graphical tools to manage MySQL database can be
downloaded from:
http://downloads.sourceforge.net/project/phpmyadmin/phpMyAdmin

After installation of all components some configuration has to be done:

1. MySQL database configuration:

To start mySQL automatically, run in shell chkconfig --add mysql
Create a database with name “pwdgov_cms” and Collation utf-8-
general CREATE DATABASE project
CHARACTER SET utf8
COLLATE utf8_bin;
Set password for root user: SET PASSWORD FOR 'root'@'localhost' =
PASSWORD('yourPassword');

 Create user in DB : CREATE USER project IDENTIFIED BY
PASSWORD 'project12345'
Grand privileges to user: GRANT ALL ON project.* TO 'project'@'%';
Run script “project.sql” to populate database.

Deployment of the CMS on the server:
On the server CMS has following structure:

http://downloads.sourceforge.net/project/phpmyadmin/phpMyAdmin

Software Design Document, CMS

102

Software Design Document, CMS

103

Tool set and environment
Table 3. Tools and Environment

Netbeans version 8.2 Programming, testing, and making UML
diagrams

Microsoft Visio UML diagrams: block diagram, DT, Sequence
diagrams, Activity diagrams

Xampp Server v7.0 Admin MySQL through PHP MyAdmin

Microsoft Office Word Documentation

Microsoft Office Power Point Presentation

Microsoft Office Excel Log sheets, cost estimation

MySQL For database management

e-mail Communication

CVS integrated into NetBeans Checkout, update code

JUnit Unit test

Dreamweaver Welcome pages/Landing Page

Apache As HTTP web server

Software Design Document, CMS

104

B. Implementation list
The following table shows the list of requirements and indicates whether the requirement
was fulfilled in CMS V1.0.

Software Design Document, CMS

105

Table 4. Implementation list

Name Implemented (+)
/ not implemented
(-)

Note

1. Dashboard
1.1. Dashboard

1.1.1. View of today’s complaint
1.1.2. View of current month complint
1.1.3. View of quarter, Apartment
1.1.4. View of allottee.
1.1.5. Graphical interface report
1.1.6. Graphical interface report

1.2. My profile
1.2.1. View of user information
1.2.2. Change information
1.2.3. Change password and picture

1.3. Logout
1.3.1. Logout from the page.

2. User Control

2.1. User
2.1.1. Add new
2.1.2. View users
2.1.3. Search
2.1.4. Edit

2.2. User permission

2.2.1. View permission
2.2.2. Update permission

2.3. Assign to
2.3.1. Assign to asset

3. Setup
3.1. Designation

3.1.1. Add new
3.1.2. View
3.1.3. Edit

3.2. Status
3.2.1. Add new
3.2.2. View
3.2.3. Edit

3.3. Problem type
3.3.1. Add new
3.3.2. View
3.3.3. Edit

3.4. Government Department
3.4.1. Add new
3.4.2. View
3.4.3. Edit

3.5. Division GEO
3.5.1. Add new

+
+
+
+
+
+
-
+

 +
+

 -
+

+

 +
+
+

+
+

 +

 +
+
+

+

 +
+

+
+
+

+

 +
+
-

with
restrictions

with
restrictions

Software Design Document, CMS

106

3.5.2. View
3.5.3. Edit

3.6. District GEO
3.6.1. Add new
3.6.2. View
3.6.3. Edit

3.7. Building
3.7.1. Add new
3.7.2. View
3.7.3. Edit

3.8. Building Type
3.8.1. Add new
3.8.2. View
3.8.3. Edit

4. Entry Form
4.1. Circle

4.1.1. View
4.1.2. Add new
4.1.3. Edit

4.2. Division
4.2.1. Add new
4.2.2. View
4.2.3. Edit
4.2.4. Search

4.3. Subdivision
4.3.1. Add new
4.3.2. View
4.3.3. Edit
4.3.4. Search

4.4. Quarter
4.4.1. Add new
4.4.2. View
4.4.3. Edit
4.4.4. Search

4.5. Building
4.5.1. Add new
4.5.2. View
4.5.3. Edit
4.5.4. Search

4.6. Allottee
4.6.1. Add new
4.6.2. View
4.6.3. Edit
4.6.4. Search

4.7. Apartment
4.7.1. Add new
4.7.2. View
4.7.3. Edit
4.7.4. Search

4.8. Complaint
4.8.1. Add new

+
+

 +

+

 +
+

+

 +
+

+

 +
+

 +
+
+

 +
+
+
+

+
+
+

 +

+
+

 +
+

+

 +
+
+

 -
+
+
+

+
+
+

 +

with
restrictions

Software Design Document, CMS

107

4.8.2. View
4.8.3. Edit
4.8.4. Search

5. All Reports
5.1. Complaint Report

5.1.1. View
5.1.2. Search
5.1.3. Print
5.1.4. Export in excel.

5.2. User Report
5.2.1. View
5.2.2. Search
5.2.3. Print
5.2.4. Export in excel.

5.3. Quarter Report
5.3.1. View
5.3.2. Search
5.3.3. Print
5.3.4. Export in excel.

5.4. Building Report
5.4.1. View
5.4.2. Search
5.4.3. Print
5.4.4. Export in excel.

5.5. Allottee Report
5.5.1. View
5.5.2. Search
5.5.3. Print
5.5.4. Export in excel.

5.6. Summary Report
5.6.1. View
5.6.2. Search
5.6.3. Print
5.6.4. Export in excel.

5.7. Task Report
5.7.1. View
5.7.2. Search
5.7.3. Print
5.7.4. Export in excel.

6. Logout

+
+

 +
+

+

 +
+
+
+

+
+
+

+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+

Software Design Document, CMS

108

Dashboard of Access to Information idea
(Survey)

1. Dashboard
1.1. Dashboard

1.1.1. View of Total complaint
1.1.2. View of current month complaint
1.1.3. View of new complaint.
1.1.4. New complaint of current month.
1.1.5. View of inprogress Complaint.
1.1.6. View of Completed Complaints
1.1.7. View of canceled Complaints
1.1.8. View of calendar.
1.1.9. Graphical interface report of

complaint
1.1.10. Graphical interface report of this

month report
1.1.11. Graphical interface of

Complaints by month
1.1.12. Graphical interface of complaints

by year.
2. Total Complaint

2.1.1. View
2.1.2. Search
2.1.3. Print
2.1.4. Export in excel.

3. Total Complaint of this month
3.1.1. View
3.1.2. Search
3.1.3. Print
3.1.4. Export in excel.

4. New Complaint
4.1.1. View
4.1.2. Search
4.1.3. Print
4.1.4. Export in excel.

5. New Complaint of this month
5.1.1. View
5.1.2. Search
5.1.3. Print
5.1.4. Export in excel.

6. In progress Complaint
6.1.1. View
6.1.2. Search
6.1.3. Print
6.1.4. Export in excel.

7. Completed Complaint
7.1.1. View
7.1.2. Search
7.1.3. Print
7.1.4. Export in excel.

8. Canceled Complaint
8.1.1. View

-
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+

 +
+
+
+
+
+

Software Design Document, CMS

109

8.1.2. Search
8.1.3. Print
8.1.4. Export in excel.

9. Logout
10. Change Password

 +
+
+
+

 +
+

with
restrictions

Software Design Document, CMS

110

Software Design Document, CMS

111

F. Test Report

F.1. Operational Testing
Table 1. Test case 1.1

Test Case Number 1.1

Test Case Name Login

Test Case Description This test case verifies if a user can properly log into the
system and see the menu.

Preconditions N/A

Test Case Input name: string

password: string

Test Case Expected Output Display Home page & List of menu

Test Case Steps:

Login

 1: Input:

name: string

password: string
 Output:

Permission: string

Show Menu

 2: Input:

username: string

permission: string
 Output:

List of menu

Software Design Document, CMS

112

Table 2. Test case 1.2

Test Case Number 1.2

Test Case Name Report

Test Case Description This test case

Preconditions User logged in. Report page.

Test Case Input Username

Permissions

Name of report to be built

Test Case Expected Output Report as a HTML table

Test Case Steps:

Report

1: Input:

Username

Permissions

Name of report to be built

Output:

Report as a HTML table

Table 3. Test case 1.3

Test Case Number 1.3

Test Case Name Advanced Search Model

Test Case Description This test case verifies if a user searches for a string the
system shows all the items in Database including that
string.

Preconditions User logged in. Advanced search page.

Test Case Input String to be found

Software Design Document, CMS

113

 List of tables & List of columns

Test Case Expected Output HTML table

Test Case Steps:

Query

 1: Input:

String to be found

List of tables with

List of columns
 Output:

SQL query: string

Connection

 2: Input:

address of SQL server: string
 Output:

TRUE if connected

Retrieve Data

 3: Input:

Data from SQL
 Output:

Array of string

Display HTML Table

 4: Input:

Array of string
 Output:

HTML table

Software Design Document, CMS

114

F.2. Data Integrity Testing
Table 4. Test case 2.1

Test Case Number 2.1

Test Case Name Saved Data Integrity

Test Case Description This test case verifies if the data saved when the window
is closed by double clicking on the close box?

Preconditions Logged in user.

Test Case Input Closing a window.

Test Case Expected Output Saving data in that window

Test Case Steps:

Saved Data Integrity

1: Input:

Closing a window.

Output:

Saving data in that window.

Table 5. Test case 2.2

Test Case Number 2.2

Test Case Name Maximum character length

Test Case Description This test case checks the maximum field lengths to
ensure that there are no truncated characters.

Preconditions Logged in user needed to enter a string.

Test Case Input Enter a large-length string.

Test Case Expected Output Temporarily saved large-length string for further actions.

Software Design Document, CMS

115

Test Case Steps:

Maximum Character Length

 1: Input:

Enter a large-length string in the search text
box.

Output:

System could keep it in a variable to search for it

without losing any substring.

Table 6. Test case 2.3

Test Case Number 2.3

Test Case Name Default value preserving

Test Case Description This test case verifies where the database requires a
value (other than null) then this should be defaulted into
fields. The user must either enter an alternative valid
value or leave the default value intact.

Preconditions User logged in.

Test Case Input Leave a field with default value.

Test Case Expected Output Display the proper default value.

Test Case Steps:

Default Value Preserving

1: Input:

User does not enter any value for a field which is
supposed to load with a default value.

Output:

Field is displayed with its default value.

Software Design Document, CMS

116

Table 7. Test case 2.4.1

Test Case Number 2.4.1

Test Case Name Numeric value range

Test Case Description This test case checks maximum and minimum field
values for numeric fields.

Preconditions User logged in.

Test Case Input Enter a numeric value not greater than the maximum
limit.

Test Case Expected Output System can handle the value without any problem.

Test Case Steps:

Maximum Numeric value

1: Input:

Enter a large numeric value not greater than
maximum limit

Output:

System can handle the value (Variable type is
defined properly).

Table 8. Test case 2.4.2

Test Case Number 2.4.2

Test Case Name Numeric value range

Test Case Description This test case checks maximum and minimum field
values for numeric fields.

Preconditions User logged in.

Test Case Input Enter a numeric value not less than the minimum limit.

Software Design Document, CMS

117

Test Case Expected Output System can handle the value without any problem.

Test Case Steps:

Minimum Numeric value

1: Input:

Enter a small numeric value not less than the
minimum value.

Output:

System can handle the value (variable type is
defined properly).

Table 9. Test case 2.5.1

Test Case Number 2.5.1

Test Case Name Avoid truncation of string and rounding of numeric value.

Test Case Description This test case verifies If a particular set of data is saved
to the database check that each value gets saved fully to
the database. i.e. Beware of truncation (of strings) and
rounding of numeric values.

Preconditions User logged in.

Test Case Input Enter an asset attributes.

Test Case Expected Output Displays the modifications in the Database.

Test Case Steps:

Avoid truncation of string values

1: Input: Enter an asset attributes.

Output:

Displays the modifications in the database
without losing any character.

Software Design Document, CMS

118

Table 10. Test case 2.5.2

Test Case Number 2.5.2

Test Case Name Avoid truncation of string and rounding of numeric value.

Test Case Description This test case verifies If a particular set of data is saved
to the database check that each value gets saved fully to
the database. i.e. Beware of truncation (of strings) and
rounding of numeric values.

Preconditions User logged in.

Test Case Input Enter a room size

Test Case Expected Output Displays the modification in the Databse.

Test Case Steps:

Avoid rounding of numeric values

1: Input:

Enter a set of numeric values for a room size.

Output:

Displays all the actual values in the Database
without losing anything.

F.3. Graphical User Interface Testing
Table 11. Test case 3.1

Test Case Number 3.1

Test Case Name Application Compliance Standard

Test Case Description Closing the application should result in an "Are you Sure"
message box

Preconditions User logged in.

Test Case Status Failed for main page.

Software Design Document, CMS

119

Test Case Attempt: A user logged in as a test user. By clicking on the close
box, the application terminates without any notice!

Table 12. Test case 3.2

Test Case Number 3.2

Test Case Name Help Menu

Test Case Description All screens should have a Help button, F1 should work
doing the same.

Preconditions User logged in.

Test Case Status Failed.

Test Case Attempt: Pressing F1 in all the pages has no result! Moreover,
there is no Help button.

Table 13. Test case 3.3

Test Case Number 3.3

Test Case Name List Box Color

Test Case Description List boxes are always white background with black text
whether they are disabled or not. All others are grey.

Preconditions User logged in.

Test Case Status Passed.

Test Case Attempt: In the search menu, there are list boxes with the correct
color. Moreover, in the main page database attributes of each
entity are written in black color with white background.

Software Design Document, CMS

120

Table 14. Test case 3.4

Test Case Number 3.4

Test Case Name Curser over an enterable text box

Test Case Description Move the Mouse Cursor over all Enterable Text Boxes.
Cursor should change from arrow to Insert Bar.
If it doesn't then the text in the box should be grey or
non-updateable. Refer to previous page.

Preconditions User logged in.

Test Case Status Passed.

Test Case Attempt: All over the search text box, curser always changes from
arrow to insert bar.

Software Design Document, CMS

121

Table 15. Test case 3.5

Test Case Number 3.5

Test Case Name Text Box Characters

Test Case Description Try to overflow the text by typing to many characters -
should be stopped Check the field width with capitals W.

Enter invalid characters - Letters in amount fields, try
strange characters like + , - * etc. in All fields.

SHIFT and Arrow should Select Characters. Selection
should also be possible with mouse. Double Click should
select all text in box.

Preconditions User logged in.

Test Case Status Passed, Failed, Passed.

Test Case Attempt: In some of the fields as attributes of entities in the
database, strange characters are accepted.

Table 16. Test case 3.6

Test Case Number 3.6

Test Case Name Color validation

Software Design Document, CMS

122

Test Case Description Is the general screen background the correct colour?

Are the field prompts the correct colour?

Are the field backgrounds the correct color?

In read-only mode, are the field prompts the correct
color?

In read-only mode, are the field backgrounds the correct
color?

Preconditions User logged in.

Test Case Status Passed.

Test Case Attempt: There is no strange color used in the screen, background
and text. Read-only and deactive colors are from less
sharpness.

Table 17. Test case 3.7

Test Case Number 3.7

Test Case Name Text validation

Test Case Description Are all the field prompts spelt correctly?

Are all character or alpha-numeric fields left justified?
This is the default unless otherwise specified.

Are all numeric fields right justified? This is the default
unless otherwise specified.

Is all the microhelp text spelt correctly on this screen?

Is all the error message text spelt correctly on this
screen?

Is all user input captured in UPPER case or lower case

Software Design Document, CMS

123

 consistently?

Preconditions User logged in.

Test Case Status Passed.

Test Case Attempt: All the prompts are spelt correctly.

Alpha-numeric characters are left justified.

Numeric fields are right justified.

User inputs are captured in lower case.

Table 18. Test case 3.8

Test Case Number 3.8

Test Case Name Alignment

Test Case Description Are all the field prompts aligned perfectly on the screen?

Are all the field edit boxes aligned perfectly on the
screen?

Are all group boxes aligned correctly on the screen?

Preconditions User logged in.

Test Case Status Passed.

Test Case Attempt: Very likely all the users enjoy the simple and user-
friendly interface of the application along with the right
placement of options, buttons and boxes.

	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Overview

	2. Design considerations
	2.1. Assumptions
	2.2. Constraints
	2.3. System environment
	2.4. Design methodology

	3. Architecture
	3.1. System design

	4. Data design
	4.1. Data description
	4.2. Data dictionary

	5. Component design
	5.1. Login
	5.2. Select language
	5.3. Assign/Modify - role
	5.4. Report

	6. Software interface design
	6.1. User interface design
	6.1.1. Web pages in a tree

	6.2. Module interface design
	A. Setup and Configuration
	After installation of all components some configuration has to be done:
	On the server CMS has following structure:

	Tool set and environment
	B. Implementation list
	F. Test Report
	F.1. Operational Testing
	F.2. Data Integrity Testing
	F.3. Graphical User Interface Testing

